On the dynamics of bi-Lyapunov stable chain recurrence classes

发布者:文明办发布时间:2019-04-12浏览次数:90


主讲人:王晓东,上海交通大学研究员


时间:2019年4月15日10:30


地点:徐汇校区三号楼332


举办单位:数理学院


内容介绍:In this talk, we recall some classical results on (bi-)Lyapunov stable chain  recurrence classes. We prove that for generic $f\in \diff^1(M)$, a homoclinic  class $H(p)$ is bi-Lyapunov stable if and only if it contains non-empty  interior. We also obtain some properties of the boundary of a bi-Lyapunov stable  homoclinic class $H(p)$ if it does not coincides with the whole manifold $M$.  This is a joint work with S. Crovisier.